TRITERPENOID SAPOGENINS FROM LEAVES OF PITTOSPORUM UNDULATUM

RYUICHI HIGUCHI,* TETSUYA KOMORI, TOSHIO KAWASAKI and ERICH V. LASSAK†

Faculty of Pharmaceutical Sciences, Kyushu University, Maedashi 3-1-1, Higashi-ku, 812 Fukuoka, Japan, †Department of Agriculture, Biological and Chemical Research Institute, P M.B 10, Rydalmere, 2116 N S W., Australia

(Received 2 August 1982)

Key Word Index—Pittosporum undulatum, Pittosporaceae, structure elucidation, triterpenoid sapogenin; acylated sapogenin; A_1 -barrigenol, camelliagenin A

Abstract—Three triterpenoid sapogenins were obtained on enzymatic hydrolysis of a saponin fraction from the leaves of *Pittosporum undulatum*. On the basis of chemical and spectral evidence they were determined as 22-O-(2-methylbutyroyl)- and 22-O-(3,3-dimethylacryloyl)-A₁-barrigenol, and 16-O-acetylcamelliagenin A. The first two compounds are new natural products.

INTRODUCTION

Pittosporum undulatum Vent. has been used as a medicinal plant in Australia [1]. The constituents of the fruits have been studied extensively and two monoterpenes [2], cyanidin [3] and two triterpenes [4, 5], of which the structures were established later as A₁- and R₁-barrigenol [6, 7], have been reported. A saponin mixture obtained from the leaves of a related plant P. tobira is reported to possess antibiotic activity [8] and three triterpenoid sapogenins, R₁-barrigenol, its 21-O-angelate and 21-O-angeloyl-barringtogenol, have been isolated from the leaves [9].

This paper describes the isolation and structure determination of three acylated triterpenoid sapogenins from the leaves of *P. undulatum*

RESULTS AND DISCUSSION

Hydrolysis of a saponin mixture, obtained from methanol extracts of the leaves with a crude nesperidinase, gave products which were separated by Si gel CC to give three homogeneous compounds, 1-3.

By taking the elemental analytical and the EIMS data into account, 1 and 2 were assigned, respectively, the molecular formulae $C_{35}H_{58}O_6$ and $C_{35}H_{56}O_6$. Compound 1 possesses hydroxyl and ester groups, as shown by its IR spectrum, whereas 2 exhibited the IR absorptions of hydroxyl and α,β -unsaturated ester functions. The ¹³C NMR spectra of 1 and 2 both showed two olefinic carbon signals (δ 124.5 and 144.1 in 1, δ 124.5 and 144.2 in 2) which were in good agreement with those of C-12 and C-13 of olean-12-ene derivatives [10]. On treatment with alkali, 1 and 2 gave the same product, A_1 -barrigenol (4). Compounds 1 and 2 were presumed, therefore, to be the derivatives of 4, which have, respectively, a C_4H_9CO and an α,β -unsaturated C_4H_7CO residue combined with a hydroxyl group of 4.

The ¹HNMR spectrum of 1 showed a triplet at $\delta 0.83$ (J = 7 Hz) and the triacetate of 1 (5) showed a doublet at $\delta 1.12$ (J = 7 Hz), respectively, which resembled signals of

(Camelliagenin A) H

the primary methyl and secondary methyl groups of the 2-methylbutyroyl function (6). Compound 1 exhibited, in the 13 C NMR spectrum, five signals (δ 11.8, 16.6, 27.1, 41.6 and 175.8) identical with those of 6. The presence of a 3,3-dimethylacryloyl group (7) in 2 was suggested by the 1 H NMR spectrum of the triacetate of 2 (8) which showed the signals of one olefinic hydrogen (δ 5.68, m) and two vinylic methyl signals (δ 1.89 and 2.15, each br s) which were in good agreement with those of 7 [11] and different from those of angeloyl [9] and tigloyl [12] groups (Table 1).

Therefore, 1 and 2, were considered, respectively, to be the 2-methylbutyrate and the 3,3-dimethylacrylate of 4

The location of the acyl moiety was determined as follows. The EIMS of both 1 and 2 exhibited the characteristic fragment peaks (m/z 366, 348, 207 in 1; 364, 346, 207 in 2) due to the retro-Diels-Alder cleavage of the olean-12-ene skeleton [13], suggesting that the acyl groups in 1 and 2 were located in a ring other than ring A. Formation of the triacetate and not the tetra-acetate from both compounds by usual acetylation suggested that the C-16 hydroxyl group in 1 and 2 was not acylated [9]. Compounds 1 and 2 showed in their ¹H NMR spectra a

^{*}To whom correspondence should be addressed.

1236 R Higuchi et al

 $Table~1^{-13}C~and~^1H~NMR~data~of~acyl~groups~\\ (a)~^{13}C~NMR~data~(C_5D_5N)$

	C-1	C-2	C-3	C-4	C-2'
DL-2-Methylbutyric acid*		414			
Acyl moiety of 1	175 8	416	2/1	118	16.6

(b) ¹H NMR data (CDCl₃)

	Olefinic H	Me group
DL-2-Methylbutyric acid*		0.95 (t, J = 7 Hz)
		1 18 $(d, J = 7 \text{ Hz})$
Acyl moiety of 1†		0.83 (t, J = 7 Hz)
Acyl moiety of 5		1.12 (d, J = 7 Hz)
Angeloyl [9]	599 q, J = 7	1.83 (br.s)
		1 99 $(d, J = 7 \text{ Hz})$
Tigloyl [12]	6 84 m	1.82 (d, J = 6 Hz)
		1 84 (br s)
3,3-Dimethylacryloyl [11]	5 65 m	1 89 (br s)
		2 14
Acyl moiety of 8	5 68 m	1 89 (br s)
		2.15 (br s)

*Commercial

 $\dagger In C_5D_5N + D_2O$

signal of one proton quartet (J=6, 12 Hz) at $\delta 6$ 13 and 6 15, respectively, which was attributable to the proton next to an acylated hydroxyl group, and the splitting pattern suggested that the signals were due to H-22. The above data indicated that the C-22 hydroxyl group of 4 was esterified both in 1 and 2 Consequently, 1 and 2 are 22-O-(2-methylbutyroyl)- and 22-O-(3,3-dimethylacryloyl)-A₁-barrigenol, respectively

Compound 3, $C_{32}H_{52}O_5$, showed an ester carbonyl absorption in the IR and the signals of one acetoxy, one olefinic proton and seven tertiary methyls in the ¹H NMR spectrum, suggesting that 3 was the monoacetate of an oleanene derivative Compound 3 was acetylated to give the tetra-acetate, 9, and hydrolysed with alkali to provide camelliagenin A (10) [14, 15]

The ¹H NMR spectrum of the 16-O-acetate* of 10 had been reported [16] and the signals due to the proton next to the acetoxy group were in good agreement with those of 3 Thus, 3 is 16-O-acetyl-camelliagenin A

There have been reported several kinds of 22-O-acylates of 4 [17-19], but 1 and 2 are the first natural products obtained in a pure state-

Since 1-3 were isolated following enzymatic hydrolysis of a saponin fraction, it is assumed that they are not artefacts and that in the plant they are combined with sugar moieties to form the respective parent saponins

EXPERIMENTAL

All mps were uncorr Optical rotations were measured at $19\text{-}21^\circ$ using a 1 dm cell ^1H NMR spectra were taken at $100\,\text{MHz}$ in CDCl $_3$ soln unless otherwise specified using TMS as int standard ^{13}C NMR spectra were recorded at 25 05 MHz in $\text{C}_3\text{D}_3\text{N}$ (TMS as int standard) employing the FT mode. The EIMS were run on double focusing mass spectrometers and were recorded electrically with an accelerating potential of $30\text{-}65\,\text{kV}$ and an ionizing potential of $30\text{-}75\,\text{eV}$ TLC was carried out on Siget and the solvent systems were: (a) CHCl $_3$ MeOH (20 1) and (b) n-hexane-EtOAc (3.2)

Plant material Foliage from a single tree of Pittosporum undulatum (voucher specimen No 77-070, Biological and Chemical Research Institute Herbarium) was collected in June at Berowra Heights near Sydney, New South Wales, Australia

Isolation of the saponin mixture. Fresh material was extracted successively with n-hexane and MeOH. The MeOH extractives were partitioned between EtOAc n-BuOH (2-1) and H₂O. The H₂O layer was extracted with n-BuOH and the extracts evaporated in vacuo to give a saponin mixture (18.0 g).

Enzymatic hydrolysis of the saponin mixture. The crude saponint (18g) in 02 M KH₂PO₄ (450 ml) was incubated with a crude hesperidinase (11g) at 37- for 2 days and the products extracted with EtOAc. The extracts showing two major spots (R_f 0 37, 0 19) in TLC (solvent a) were evaporated and chromatographed on Sigel (eluant, CHCl₃-MeOH, 100 1 \rightarrow 50 1) to give two fractions (fraction 1, R_f 0 37, fraction 2, R_f 0 19). Fraction 1 showed two spots (R_f 0 39, 0 35) in TLC using solvent b and it was subjected to prep. TLC (solvent b) to afforded two homogeneous compounds, 1 (37 mg, R_f 0 39) and 2 (25 mg, R_f 0 35). Fraction 2 was

^{*}According to the personal communication of Professor Kitagawa, this compound was obtained by acid hydrolysis of a saponin fraction of *Primula japonica*

crystallized from n-hexane-EtOAc to yield 3 (40 mg) (R_f 0 19 in solvent a; 0 18 in solvent b).

Compound 1 Colourless plates (from CHCl₃-Me₂CO), mp 225-228°, [α]_D + 31 7° (MeOH, c 1 7) IR ν _{max} cm⁻¹ 3400 (OH), 1700 (ester); EIMS m/z 574 4247 (M⁺, calcd for C₃₅H₅₈O₆ 574 4233), 366, 348, 207, ¹H NMR (C₅D₅N + D₂O) δ 0 99, 1 14, 1 24 and 1 26 (3H each, s, Me × 4), 1 08 (6H, s, Me, × 2), 1 86 (3H, s, H-27), 0.83 (3H, t, J = 7 Hz, Me of acyl group), 3 46 (1H, t, J = 8 Hz, H-3), 3 58 and 3 80 (1H each, d, J = 10 Hz, H₂-28), 4.26 (1H, d, J = 4 Hz, H-15), 4 50 (1H, d, J = 4 Hz, H-16), 5 56 (1H, m, H-12), 6 13 (1H, q, J = 6, 12 Hz, H-22), ¹³C NMR δ 11 8 (q, Me of acyl group), 16.6 (q, Me of acyl group), 27.1 (t, -CH₂- of acyl group), 41 6 (d, -CH- of acyl group), 124 5 (d, C-12), 144 1 (s, C-13), 175 8 (s, RCOO-) (Found C, 71 39, H, 9 89 C₃₅H₅₈O₆·H₂O requires C, 70.91, H, 10 20%.)

Triacetate (5) of 1 Compound 1 was acetylated with Ac₂O-pyridine at room temp for 1 day to give 5, colourless prisms (from MeOH), mp 235-237° IR $v_{\text{max}}^{\text{CCL}_2}$ cm⁻¹ 3500 (OH), 1730 (ester), EIMS m/z 700 [M]⁺; ¹H NMR δ 0 84, 0 87, 0.93, 0.96, 0 99 and 1.02 (3H each, s, Me × 6), 1.53 (3H, s, H-27), 1 12 (3H, d, J = 7 Hz, Me of acyl group), 2.05, 2 07 and 2 10 (3H each, s, OAc × 3), 3 73 and 3 92 (1H each, d, J = 11 Hz, H₂-28), 4 20 (1H, d, J = 4 Hz, H-16), 4 49 (1H, t, J = 8 Hz, H-3), 5 13 (1H, d, J = 4 Hz, H-15), 5.28 (1H, q, J = 6, 12 Hz, H-22), 5.45 (1H, m, H-12)

Compound 2 Colourless plates (from CHCl₃ Me₂CO), mp 240-243°, [α]_D + 240° (MeOH, c 0 8) IR ν Msr cm⁻¹ 3400 (OH), 1690 and 1650 (conjugated ester), EIMS m/z 572 4013 (M⁺, calcd for C₃₅H₅₆O₆ 572 4076), 364, 346, 207, ¹H NMR (C₅D₅N): δ 0.99, 1.12, 1 25 and 1 30 (3H each, s, Me × 4), 1 08 (6H, s, Me × 2), 1 87 (3H, s, H-27), 1 65 and 2 17 (3H each, br s, Me of acyl group), 3 47 (1H, t, t = 8.Hz, H-3), 3 58 and 3.79 (1H each, d, t = 10 Hz, H₂-28), 4 26 (1H, d, t = 4 Hz, H-15), 4 51 (1H, t, H-16), 5.54 (2H, t, t with the facyl group and H-12), 6 15 (1H, t, t = 6, 12 Hz, H-22); ¹³C NMR δ 124 5 (d, C-12), 144.2 (s, C-13) (Found, C, 71 20, H, 9 67, C₃₅H₅₆O₆ H₂O requires C, 71.15; H, 9 90%.)

Trucetate (8) of 2 This was prepared by acetylation of 2 in the same manner as for 1 Powder (from n-hexane–Me₂CO), mp $145-148^{\circ}$. IR $v_{max}^{CC_4}$ cm⁻¹ 3500 (OH), 1740 (ester), EIMS m/z 698 [M], + , 1H.NMR: δ 0.84, 0.87, 0.93, 0.95, 0.99 and 1, 0.4 (3H.each, s., Me × 6), 1.53 (3H, s., H-27), 2.01, 2.05 and 2.10 (3H each, s., OAc × 3), 1.89 and 2.15 (3H each, br s., Me of acyl group), 4.26 (1H, d, J = 4 Hz, H-16), 4.48 (1H, t, J = 8 Hz, H-3), 5.16 (1H, d, J = 4 Hz, H-15), 5.30 (1H, m, H-22), 5.44 (1H, m, H-12), 5.68 (1H, m, vinylic H of acyl group)

Alkaline hydrolysis of 1 and 2 to give A_1 -barrigenol (4) Compound 1 (or 2) was boiled with 4% (w/v) K_2CO_3 in MeOH for 10 min, the reaction mixture was diluted with H_2O and extracted with EtOAc. The organic layer was evaporated and the residue was crystallized from Me₂CO to give 4 as colourless needles, mp $278-280^\circ$, $[\alpha]_D + 279^\circ$ (dioxane, c=0.7). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹. 3500 and 3400 (OH); EIMS m/z: 490 3617 (M⁺, calcd for $C_{30}H_{50}O_5$ 490.3658), 282, 207 It was identical with an authentic sample: mmp, IR, EIMS and TLC (solvent a)

Compound 3. Colourless prisms (from n-hexane-EtOAc), mp 252-255°, $[\alpha]_D = 1.9^\circ$ (MeOH, c 1.6) IR v_{max}^{BBr} cm⁻¹ 3400 (OH), 1720 (ester); EIMS m/z 516 3826 (M⁺, calcd for $C_{32}H_{52}O_5$. 516 3815), 308, 207, ¹H NMR δ 0 78 (3H, s, Me), 0 94 (12H, s, Me × 4), 0.98 (3H, s, Me), 1 34 (3H, s, H-27), 2 10 (3H, s, OAc), 3.20 (1H, t, J = 8 Hz, H-3), 3.34 and 3 66 (1H each, d, J = 11 Hz, H₂-28), 3 93 (1H, q, J = 6, 11 Hz, H-22), 5.30 (1H, m, H-12), 5.70 (1H,

m, $W_{1/2} = 8$ Hz, H-16) Compound 3 was acetylated with Ac₂O-pyridine at 80° for 1 hr to yield the tetra-acetate, 9, as a powder (from n-hexane-Me₂CO), mp 108-110°. IR $v_{\text{max}}^{\text{CCl}}$ cm⁻¹ no OH, 1740 (ester); EIMS m/z 642 [M]⁺, ¹H NMR $\stackrel{?}{0}$ 087 (6H, s, Me × 2), 0.91 (3H, s, Me), 0.97 (6H, s, Me × 2), 1.03 (3H, s, Me), 1.31 (3H, s, H-27), 2.00 (3H, s, OAc), 2.06 (6H, s, OAc × 2), 2.10 (3H, s, OAc), 3.71 and 3.88 (1H each, d, J = 11 Hz, H₂-28), 4.48 (1H, q, J = 7, 9 Hz, H-3), 5.0-5.6 (3H, m, H-12, H-16, H-22)

Alkaline hydrolysis of 3 to give camelhagenin A (10) Compound 3 was hydrolysed as for 1 The reaction mixture was diluted with H_2O and the ppts were collected and crystallized from MeOH to give 10 as colourless needles, mp 274–276°, $[\alpha]_D + 25.7^\circ$ (MeOH, c 0.8). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3400 (OH); EIMS m/z 474 3726 (M⁺, calcd for $C_{30}H_{50}O_4$ 474 3709), 266, 248, 207 It was identified with an authentic sample by mmp, IR, EIMS and TLC (solvent a)

Acknowledgements—We thank Professor I Kitagawa, Osaka University, for the authentic samples of A₁-barrigenol and camelhagenin A, Dr Y. Egawa, Tanabe Pharmaceutical Co, for crude hesperidinase, and Mr I Maetani, Mr A Tanaka and Miss K Soeda, Faculty of Pharmaceutical Sciences, and the members of the Central Analytical Department, Kyushu University, for EIMS, ¹³C NMR, ¹H NMR and elemental analytical data, respectively

REFERENCES

- 1 Maiden, J. H (1889) The Useful Native Plants of Australia p 199 Sydney
- 2 Power, F B. and Tutin, F (1906) J. Chem Soc 89, 1083.
- Cornforth, I. W. and Earl, I. C. (1938) Proc. R. Soc. N. S. W. 72, 249.
- Cole, A. R. H., Dowing, D. T., Warkins, J. C. and White, D. E. (1955) Chem. Ind. 254.
- 5 Knight, J. O and White, D E. (1961) Tetrahedron Letters 100
- 6 Errington, S. G., White, D E. and Fuller, M W (1967) Tetrahedron Letters 1289
- 7 Ito, S, Ogino, T, Sugiyama, H and Kodama, M (1967) Tetrahedron Letters 2289.
- 8. Suegirev, D. P. (1959) Tr. Gos. Nikitskii, Bat. Sad., 30, 36.
- 9 Yoshioka, I, Hino, K, Matsuda, A. and Kitagawa, I (1972) Chem. Pharm Bull. 20, 1499.
- 10 Doddrell, D M., Khong, P. W. and Lewis, K G. (1974) Tetrahedron Letters 2381
- Hiller, K., Linzer, B., Pfeifer, S., Tokes, L. and Murphy, J (1968) Pharmazie 23, 376.
- Hayashi, T., Koshiro, C., Adachi, T., Yoshioka, I. and Kitagawa, I (1967) Tetrahedron Letters 2353
- Budzikiewicz, H., Wilson, J. M. and Djerassi, C. (1963) J. Am. Chem. Soc. 85, 3688
- 14 Ito, S, Kodama, M. and Konoike, M (1967) Tetrahedron Letters 591
- 15 Itokawa, H., Sawada, N and Murakami, T (1967) Tetrahedron Letters 597
- Kıtagawa, I., Yoshikawa, M and Yoshioka, I (1974) Tetrahedron Letters 469
- 17. Khong, P. W and Lewis, K G. (1976) Aust. J Chem 29, 1351.
- 18 Chen, W.-H. and Wu, D.-G. (1978) Hua Hsueh Hsueh Pao 36, 229
- Hiller, K., Keipert, M., Pfeifer, S., Tokes, L. and Maddox, M. L. (1970) Pharmazie 25, 769